Robin Spectral Rigidity of the Ellipse

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem

در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...

On Spectral Gap Rigidity

We calculate Connes’ invariant χ(M) for certain II1 factors M that can be obtained as inductive limits of subfactors with spectral gap, then use this to answer a question he posed in 1975, on the structure of McDuff factors M with χ(M) = 1.

متن کامل

Invariants of isospectral deformations and spectral rigidity

We introduce a notion of weak isospectrality for continuous deformations. Let us consider the Laplace-Beltrami operator on a compact Riemannian manifold with boundary with Robin boundary conditions. Given a Kronecker invariant torus Λ of the billiard ball map with a Diophantine vector of rotation we prove that certain integrals on Λ involving the function in the Robin boundary conditions remain...

متن کامل

The hybrid spectral problem and Robin boundary conditions

The hybrid spectral problem where the field satisfies Dirichlet conditions (D) on part of the boundary of the relevant domain and Neumann (N) on the remainder is discussed in simple terms. A conjecture for the C 1 coefficient is presented and the conformal determinant on a 2-disc, where the D and N regions are semicircles , is derived. Comments on higher coefficients are made. A separable secon...

متن کامل

Marked length spectral rigidity for flat metrics

In this paper we prove that the space of flat metrics (nonpositively curved Euclidean cone metrics) on a closed, oriented surface is marked length spectrally rigid. In other words, two flat metrics assigning the same lengths to all closed curves differ by an isometry isotopic to the identity. The novel proof suggests a stronger rigidity conjecture for this class of metrics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2020

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-019-00339-4